Elementary gates for cartoon computation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2007 J. Phys. A: Math. Theor. 40 F753
(http://iopscience.iop.org/1751-8121/40/31/F01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.144
The article was downloaded on 03/06/2010 at 06:07

Please note that terms and conditions apply.

FAST TRACK COMMUNICATION

Elementary gates for cartoon computation

Marek Czachor
Katedra Fizyki Teoretycznej i Informatyki Kwantowej, Politechnika Gdańska, 80-952 Gdańsk, Poland

Received 25 June 2007
Published 19 July 2007
Online at stacks.iop.org/JPhysA/40/F753

Abstract

The basic one-bit gates (X, Y, Z, Hadamard, phase, $\pi / 8$) as well as the controlled СNOT and Toffoli gates are reformulated in the language of geometricalgebra quantum-like computation. Thus, all the quantum algorithms can be reformulated in purely geometric terms without any need of tensor products.

PACS numbers: 03.67.Lx, 03.65.Ud

1. Introduction

Cartoon computation [1] is a formalism for quantum-like computation based on geometric operations. One does not need tensor products to speak of entanglement, parallelism, superpositions and interferences. The analysis given in [1] illustrated the basic principle on the Deutsch-Jozsa problem [2]. An analogous construction was recently applied in [3] to the Simon problem [4]. Other oracle problems were mentioned in the context of geometricalgebra computation in [5]. In the present paper I will not work with oracles but concentrate on elementary one-, two- and three-bit gates. This step is essential for both concrete applications and analysis of complexity of algorithms.

I first begin with explaining the link between geometric algebra and binary coding. The idea is essentially the same as in [1], but there are certain technical differences associated with two subsidiary dimensions (here a $(n+2)$-dimensional Euclidean space is used for coding n-bit numbers). Once we know how to code and perform simple operations on bits, we can introduce gates. I start with the basic one-bit gates and then introduce multiply controlled nots [6]. Finally I show on a concrete example that the geometric product leads to the same type of 'compression' and parallelism as the tensor product framework of quantum computation. I end this paper with remarks on earlier approaches.

2. Binary parametrization

Take a $(n+2)$-dimensional Euclidean space with the basis $\left\{b_{0}, b_{1}, \ldots, b_{n}, b_{n+1}\right\}$. Geometric products of different basis vectors are called blades. One-blades (i.e. basis vectors) satisfy the

Clifford algebra

$$
b_{k} b_{l}+b_{l} b_{k}=2 \delta_{k l} .
$$

There are 2^{n+2} different blades. The basis vectors b_{0} and b_{n+1} play in our formalism a privileged role. Real blades are those that do not involve b_{0}; those including b_{0} are termed imaginary. We shall see below that this terminology is consistent with a complex structure needed for implementation of the one-bit elementary quantum-like gates.

We shall often need in the formulae the blade b_{n+1} so let us shorten the notation by $b_{n+1}=b$. The blades that do not involve b_{n+1} will be termed the combs, and are parametrized by n-bit strings according to the following convention [1]: $b_{1}=c_{0 ; 10 \ldots 0}, \ldots, b_{n}=c_{0 ; 0 \ldots 1}, b_{0} b_{1}=$ $c_{1 ; 10 \ldots 0}, \ldots, b_{0} b_{n}=c_{1 ; 0 \ldots 01}, b_{1} b_{2}=c_{0 ; 110 \ldots 0}, \ldots, b_{1} b_{2} \ldots b_{n}=c_{0 ; 1 \ldots 1}, b_{0} b_{1} b_{2} \ldots b_{n}=$ $c_{1 ; 1 \ldots 1}$. The combs beginning with ' 0 ;' or ' 1 ;' are real and imaginary, respectively. We supplement the combs by the (real) 0 -blade $1=c_{0 ; 0 . .0}$. The zeroth bit ' A;', separated by the semicolon from all the other bits $A_{1} \ldots A_{n}$, is not needed for coding binary numbers but only for the complex structure. Therefore, one can skip it if one explicitly works with the complex structure map i introduced below.

The operation of reverse is denoted by ${ }^{*}$ and is defined on blades by $\left(b_{j_{1}} \ldots b_{j_{k}}\right)^{*}=$ $b_{j_{k}} \ldots b_{j_{1}}$. Now let $a=b_{0} b, a_{k}=b_{k} b, 1 \leqslant k \leqslant n$. Then

$$
\begin{aligned}
& a_{k}^{*} c_{A ; A_{1} \ldots A_{k} \ldots A_{n}} a_{k}=(-1)^{A_{k}} c_{A ; A_{1} \ldots A_{k} \ldots A_{n}} \\
& b_{k} c_{A_{0} ; A_{1} \ldots A_{k} \ldots A_{n}}=(-1)^{\sum_{j=0}^{k-1} A_{j}} c_{A_{0} ; A_{1} \ldots A_{k}^{\prime} \ldots A_{n}}
\end{aligned}
$$

where the prime denotes negation of a bit, i.e. $0^{\prime}=1,1^{\prime}=0$. Negation of the k th bit can be expressed in algebraic terms

$$
n_{k} c_{A ; A_{1} \ldots A_{k} \ldots A_{n}}=b_{k} a_{k-1}^{*} \ldots a_{1}^{*} a^{*} c_{A ; A_{1} \ldots A_{k} \ldots A_{n}} a a_{1} \ldots a_{k-1}=c_{A ; A_{1} \ldots A_{k}^{\prime} \ldots A_{n}}
$$

The complex structure is defined by

$$
\mathrm{i} c_{A ; A_{1} \ldots A_{n}}=(-1)^{A^{\prime}} c_{A^{\prime} ; A_{1} \ldots A_{n}} .
$$

This definition implies the usual formulae

$$
\mathrm{i}^{2} c_{A ; A_{1} \ldots A_{n}}=-c_{A ; A_{1} \ldots A_{n}}, \quad \mathrm{e}^{\mathrm{i} \phi} c_{A ; A_{1} \ldots A_{n}}=(\cos \phi+\mathrm{i} \sin \phi) c_{A ; A_{1} \ldots A_{n}}
$$

i and n_{k} commute if $0<k$.
One has now two options: either work with explicitly real coefficients but having the number of combs doubled (by the presence of the zeroth bit), or allow for 'complex' coefficients explicitly involving the linear map i, and then the zeroth bit can be skipped. I prefer the second option, where the combs are parametrized by n indices $c_{A_{1} \ldots A_{n}}$, since it makes the formulae compact and quantum looking, and all the shown bits are used for coding binary numbers. Still, for geometric purposes it is important to bear in mind that the Clifford algebra is real.

3. Elementary gates

A one-bit gate, $1 \leqslant k \leqslant n$, is

$$
G_{k}=\frac{1}{2}\left(\alpha+\beta n_{k}\right)\left(1+(-1)^{A_{k}}\right)+\frac{1}{2}\left(\delta+\gamma n_{k}\right)\left(1-(-1)^{A_{k}}\right)
$$

where $\alpha=\alpha_{1}+\alpha_{2} \mathrm{i}, \beta=\beta_{1}+\beta_{2} \mathrm{i}, \gamma=\gamma_{1}+\gamma_{2} \mathrm{i}, \delta=\delta_{1}+\delta_{2} \mathrm{i}$; the numbers $\alpha_{1}, \ldots, \delta_{2}$ are real. The link to quantum computation is that the matrix of coefficients $\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ should be taken in a form corresponding to an appropriate quantum gate.

Let us check the concrete gates. The three Pauli gates are

$$
\begin{aligned}
& X_{k} c_{A_{1} \ldots A_{k} \ldots A_{n}}=n_{k} c_{A_{1} \ldots A_{k} \ldots A_{n}}, \\
& Y_{k} c_{A_{1} \ldots A_{k} \ldots A_{n}}=-\mathrm{i} n_{k} a_{k}^{*} c_{A_{1} \ldots A_{k} \ldots A_{n}} a_{k}, \\
& Z_{k} c_{A_{1} \ldots A_{k} \ldots A_{n}}=a_{k}^{*} c_{A_{1} \ldots A_{k} \ldots A_{n}} a_{k} .
\end{aligned}
$$

One verifies on components the usual properties

$$
\begin{aligned}
& X_{k} c_{A_{1} \ldots 0_{k} \ldots A_{n}}=c_{A_{1} \ldots 1_{k} \ldots A_{n}}, \\
& X_{k} c_{A_{1} \ldots 1_{k} \ldots A_{n}}=c_{A_{1} \ldots 0_{k} \ldots A_{n}}, \\
& Y_{k} c_{A_{1} \ldots 0_{k} \ldots A_{n}}=-\mathrm{i} c_{A_{1} \ldots 1_{k} \ldots A_{n}}, \\
& Y_{k} c_{A_{1} \ldots 1_{k} \ldots A_{n}}=\mathrm{i} c_{A_{1} \ldots 0_{k} \ldots A_{n}}, \\
& Z_{k} c_{A_{1} \ldots 0_{k} \ldots A_{n}}=c_{A_{1} \ldots 0_{k} \ldots A_{n}}, \\
& Z_{k} c_{A_{1} \ldots 1_{k} \ldots A_{n}}=-c_{A_{1} \ldots 1_{k} \ldots A_{n}} .
\end{aligned}
$$

The Hadamard gate:

$$
\begin{aligned}
H_{k} c_{A_{1} \ldots A_{k} \ldots A_{n}} & =\frac{1}{\sqrt{2}} n_{k} c_{A_{1} \ldots A_{k} \ldots A_{n}}+\frac{1}{\sqrt{2}} a_{k}^{*} c_{A_{1} \ldots A_{k} \ldots A_{n}} a_{k} \\
& =\frac{1}{\sqrt{2}}\left(X_{k}+Z_{k}\right) c_{A_{1} \ldots A_{k} \ldots A_{n}} .
\end{aligned}
$$

The phase and $\pi / 8$ gates:

$$
\begin{aligned}
& S_{k} c_{A_{1} \ldots A_{k} \ldots A_{n}}=\frac{1}{2}(1+\mathrm{i}) c_{A_{1} \ldots A_{k} \ldots A_{n}}+\frac{1}{2}(1-\mathrm{i}) a_{k}^{*} c_{A_{1} \ldots A_{k} \ldots A_{n}} a_{k} \\
& T_{k} c_{A_{1} \ldots A_{k} \ldots A_{n}}=\frac{1}{2}\left(1+\mathrm{e}^{\mathrm{i} \pi / 4}\right) c_{A_{1} \ldots A_{k} \ldots A_{n}}+\frac{1}{2}\left(1-\mathrm{e}^{\mathrm{i} \pi / 4}\right) a_{k}^{*} c_{A_{1} \ldots A_{k} \ldots A_{n}} a_{k} .
\end{aligned}
$$

Let us check the latter two on components:

$$
\begin{aligned}
S_{k} c_{A_{1} \ldots 0_{k} \ldots A_{n}} & =c_{A_{1} \ldots 0_{k} \ldots A_{n}} \\
S_{k} c_{A_{1} \ldots 1_{k} \ldots A_{n}} & =\mathrm{i} c_{A_{1} \ldots 1_{k} \ldots A_{n}} \\
T_{k} c_{A_{1} \ldots 0_{k} \ldots A_{n}} & =c_{A_{1} \ldots 0_{k} \ldots A_{n}} \\
T_{k} c_{A_{1} \ldots 1_{k} \ldots A_{n}} & =\mathrm{e}^{i \pi / 4} c_{A_{1} \ldots 1_{k} \ldots A_{n}} .
\end{aligned}
$$

A general controlled two-bit gate is

$$
G_{k l}=G_{k}^{\prime} \frac{1}{2}\left(1+(-1)^{A_{l}}\right)+G_{k}^{\prime \prime} \frac{1}{2}\left(1-(-1)^{A_{l}}\right),
$$

where G_{k}^{\prime} and $G_{k}^{\prime \prime}$ are one-bit gates. Control-not (CNOT) reads

$$
\mathrm{cn}_{k l}=\frac{1}{2}\left(1+(-1)^{A_{l}}\right)+X_{k} \frac{1}{2}\left(1-(-1)^{A_{l}}\right) .
$$

This can be generalized to arbitrary numbers of controlling bits. An example is given by the three-bit control-cNot (Toffoli) gate

$$
\mathrm{cn}_{k l m}=\frac{1}{2}\left(1+(-1)^{A_{m}}\right)+\mathrm{cn}_{k l} \frac{1}{2}\left(1-(-1)^{A_{m}}\right)
$$

4. Geometric meaning of the gates

The gates such as H_{k} or $\mathrm{cn}_{k l}$ and $\mathrm{cn}_{k l m}$ consist of pairs of operations, a fact suggesting that composition of N gates will require 2^{N} operations. The problem is, however, more subtle. In order to see the subtlety we have to get used to thinking of all the geometric-algebra operations in geometric terms.

4.1. Two bits, gates X_{1} and X_{2}

For two bits the geometric background is provided by a plane spanned by some orthonormal basis $\left\{e_{1}, e_{2}\right\}$. The blades are $1=\circ$ (a 'charged' point), $e_{1}=\rightarrow, e_{2}=\uparrow$ (oriented line segments), $e_{12}=$(an oriented plane segment). The action of the gates is
$X_{1} c_{A_{1} A_{2}}=c_{A_{1}^{\prime} A_{2}}, X_{2} c_{A_{1} A_{2}}=c_{A_{1} A_{2}^{\prime}}$. We can forget about the zeroth bit (leading to a third dimension) and visualize as follows:

$$
X_{1}\left(\begin{array}{c}
\circ \\
\rightarrow \\
\uparrow \\
\square
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
\circ \\
\vec{~} \\
\uparrow \\
\square
\end{array}\right) .
$$

One recognizes in the above matrix the tensor product $\mathbf{1} \otimes \sigma_{1}$:

$$
X_{2}\left(\begin{array}{c}
\circ \\
\rightarrow \\
\uparrow \\
\square
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\circ \\
\rightarrow \\
\uparrow \\
\square
\end{array}\right) .
$$

Now the matrix is $\sigma_{1} \otimes 1$. Similar representation is found if one takes a multivector $V=V_{0}+V_{1} e_{1}+V_{2} e_{2}+V_{12} e_{12}=\left(V_{0}, V_{1}, V_{2}, V_{12}\right)$. Then

$$
X_{1} V=\left(V_{1}, V_{0}, V_{12}, V_{2}\right), \quad X_{2} V=\left(V_{2}, V_{12}, V_{0}, V_{1}\right)
$$

Let us recall that multivectors are, from a geometrical standpoint, sets containing different shapes, so they have a clear geometric interpretation [1]. Simultaneously, in the context of computation, they play a role of entangled states.
4.2. Two bits, gates Z_{1} and Z_{2}
$Z_{1} c_{A_{1} A_{2}}=(-1)^{A_{1}} c_{A_{1} A_{2}}, Z_{2} c_{A_{1} A_{2}}=(-1)^{A_{2}} c_{A_{1} A_{2}}$,

$$
\begin{aligned}
Z_{1}\left(\begin{array}{c}
\circ \\
\rightarrow \\
\uparrow \\
\square
\end{array}\right) & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
\circ \\
\rightarrow \\
\uparrow \\
\square
\end{array}\right), \\
Z_{2}\left(\begin{array}{c}
\circ \\
\rightarrow \\
\uparrow \\
\square
\end{array}\right) & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
\circ \\
\rightarrow \\
\uparrow \\
\square
\end{array}\right) .
\end{aligned}
$$

4.3. Two bits, gates H_{1} and H_{2}

Since $H_{k}=\left(X_{k}+Z_{k}\right) / \sqrt{2}$,

$$
\begin{aligned}
H_{1}\left(\begin{array}{c}
\circ \\
\rightarrow \\
\uparrow \\
\square
\end{array}\right) & =\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)\left(\begin{array}{c}
\circ \\
\rightarrow \\
\uparrow \\
\square
\end{array}\right), \\
H_{2}\left(\begin{array}{c}
\circ \\
\uparrow \\
\rightarrow \\
\square
\end{array}\right) & =\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)\left(\begin{array}{c}
\circ \\
\uparrow \\
\rightarrow \\
\square
\end{array}\right) .
\end{aligned}
$$

Note that H_{2} is represented with permuted \rightarrow and \uparrow.
Let us stress again that although formally one can identify certain tensor products in the above matrices, the space of states does not involve abstract tensoring of qubits, but only geometric operations in Euclidean spaces.

4.4. Two bits, gates cn_{12} and cn_{21}

Here $\mathrm{cn}_{12} c_{A_{1} 0}=c_{A_{1} 0}, \mathrm{cn}_{12} c_{A_{1} 1}=c_{A_{1}^{\prime} 1}, \mathrm{cn}_{21} c_{0 A_{2}}=c_{0 A_{2}}, \mathrm{cn}_{21} c_{1 A_{2}}=c_{1 A_{2}^{\prime}}$.

$$
\begin{aligned}
\mathrm{cn}_{12}\left(\begin{array}{c}
\circ \\
\rightarrow \\
\uparrow \\
\square
\end{array}\right) & =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
\circ \\
\rightarrow \\
\uparrow \\
\square
\end{array}\right), \\
\mathrm{cn}_{21}\left(\begin{array}{c}
\circ \\
\uparrow \\
\rightarrow \\
\square
\end{array}\right) & =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
\circ \\
\uparrow \\
\rightarrow \\
\square
\end{array}\right)
\end{aligned}
$$

4.5. Three bits, gates $\mathrm{cn}_{123}, \mathrm{cn}_{312}$ and cn_{231}

Here the only nontrivial actions are $\mathrm{cn}_{123} c_{A_{1} 11}=c_{A_{1}^{\prime} 11}, \mathrm{cn}_{312} c_{11 A_{3}}=c_{11 A_{3}^{\prime}}, \mathrm{cn}_{231} c_{1 A_{2} 1}=c_{1 A_{2}^{\prime} 1}$. The Euclidean space is three dimensional. The blades involve a point 1 , three edges b_{1}, b_{2}, b_{3}, three walls b_{12}, b_{23}, b_{13}, and the cube b_{123}.

$$
\begin{aligned}
& \mathrm{cn}_{123} c_{011}=\mathrm{cn}_{123} b_{23}=c_{111}=b_{123} \\
& \mathrm{cn}_{123} c_{111}=\mathrm{cn}_{123} b_{123}=c_{011}=b_{23} \\
& \mathrm{cn}_{312} c_{110}=\mathrm{cn}_{312} b_{12}=c_{111}=b_{123} \\
& \mathrm{cn}_{312} c_{111}=\mathrm{cn}_{312} e_{123}=c_{110}=b_{12} \\
& \mathrm{cn}_{231} c_{101}=\mathrm{cn}_{231} b_{13}=c_{111}=b_{123} \\
& \mathrm{cn}_{231} c_{111}=\mathrm{cn}_{231} b_{123}=c_{101}=b_{13}
\end{aligned}
$$

Geometrically in 3D the Toffoli gate means squashing a cube into a square (one of its walls), or the other way around-reconstructing a cube from a wall. Composition of two different Toffoli gates exchanges walls of the cube, e.g. $\mathrm{cn}_{312} \mathrm{cn}_{123} b_{23}=\mathrm{cn}_{312} b_{123}=b_{12}$.

5. Example

As an example we take the simple but impressive application of 'quantum parallelism', where applying n Hadamard gates (i.e., performing n algorithmic steps) one generates a superposition of $2^{n} n$-bit numbers. In quantum computation the operation looks as follows:

$$
\begin{aligned}
H^{\otimes n}\left|0_{1} \ldots 0_{n}\right\rangle & =\frac{1}{\sqrt{2^{n}}}\left(\left|0_{1}\right\rangle+\left|1_{1}\right\rangle\right) \ldots\left(\left|0_{n}\right\rangle+\left|1_{n}\right\rangle\right) \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{A_{1} \ldots A_{n}}\left|A_{1} \ldots A_{n}\right\rangle .
\end{aligned}
$$

Quantum speedup comes from the fact that most of the operations have not to be performed by the computer itself but are taken care of by properties of the tensor product.

So let us take a look at an analogous calculation performed in the geometric-algebra framework:

$$
\begin{aligned}
H_{n} c_{0_{1} \ldots 0_{n}} & =\frac{1}{\sqrt{2}}\left(n_{n} c_{0_{1} \ldots 0_{n}}+a_{n}^{*} c_{0_{1} \ldots 0_{n}} a_{n}\right) \\
& =\frac{1}{\sqrt{2}}\left(c_{0_{1} \ldots 1_{n}}+c_{0_{1} \ldots 0_{n}}\right)=\frac{1+b_{n}}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
H_{n-1} H_{n} c_{0_{1} \ldots 0_{n}} & =\frac{n_{n-1}\left(1+b_{n}\right)+a_{n-1}^{*}\left(1+b_{n}\right) a_{n-1}}{\sqrt{2^{2}}} \\
& =\frac{b_{n-1}\left(1+b_{n}\right)+1+b_{n}}{\sqrt{2^{2}}}=\frac{\left(1+b_{n-1}\right)\left(1+b_{n}\right)}{\sqrt{2^{2}}}
\end{aligned}
$$

Let us note that the multivector $1+b_{n}$ is treated by n_{n-1} as a whole. From a Clifford-algebra point of view this is simply a single multivector. It makes no sense to treat $1+b_{n}$ as a combination of just two blades, since a change of basis will map it into a combination of another number of blades. There exists a single geometric object represented by $1+b_{n}$. This general observation applies to all the universal gates introduced above, and shows how to geometrically interpret the number of steps of an algorithm.

Repeating the above procedure n times we obtain

$$
\begin{align*}
H_{1} \ldots H_{n} c_{0_{1} \ldots 0_{n}} & =\frac{\left(1+b_{1}\right) \ldots\left(1+b_{n}\right)}{\sqrt{2^{n}}} \tag{1}\\
& =\frac{1}{\sqrt{2^{n}}} \sum_{A_{1} \ldots A_{n}} c_{A_{1} \ldots A_{n}} \tag{2}
\end{align*}
$$

Equation (1) shows that the n-fold Hadamard gate involves $n-1$ Clifford-algebra multiplications. Even counting the additions in the braces as operations performed by the algorithm we arrive at $2 n-1$ steps needed for producing a linear combination of 2^{n} binary numbers.

It is therefore clear that the geometric product performs the same type of 'compression' as the tensor product. Multivectors of the form (2) can be acted upon with further gates, and in each single step one processes the entire set of 2^{n} numbers.

6. Remarks on earlier approaches

Links between qubits, spinors, entangled states and geometric algebra were, of course, noticed a long time ago, much earlier than in [1]. One should mention, first of all, the pioneering works of Hestenes [7] on relations between geometric algebra and relativity, and spinors in particular. In the context of quantum information theory the most important earlier papers are those by Havel, Doran and their collaborators, cf [8-13].

However, it seems that the very way of coding, that is, linking bits with multivectors, was in those works much less straightforward than the convention I work with in the present paper, and which was introduced in [1]. In my opinion the 'old' approach can be reduced to replacing two-component complex vectors by 2×2 matrices whose second column is empty. Such 'spinors' are matrices and thus can be written as linear combinations of the Pauli matrices, simultaneously maintaining the essential properties of the usual spinors or qubits. The Pauli matrices, on the other hand, can be regarded as a representation of geometric algebra of twoor three-dimensional Euclidean spaces. Multiparticle systems are introduced by replacing a three-dimensional space with a configuration space and one arrives at a multiparticle geometric algebra. The tensor product is then constructed by means of bivectors (appropriate bivectors may commute with one another).

The approach used in [1] and in the present paper is so different from those based on multiparticle geometric algebras that it is even difficult to find similarities. Here tensor products are not employed at any stage (of course sometimes some matrices are of a tensor product form, as we have seen in the case of X_{k}, say, but this is irrelevant for the construction) and even the ' i ' I use is different. So the approach I advocate is clearly an alternative to the
earlier works that, at least in my opinion, have a status of a standard theory reformulated in a different language.

Acknowledgments

I am indebted to Krzysztof Giaro, Marcin Pawłowski, Tomasz Magulski and Łukasz Orłowski for discussions.

References

[1] Aerts D and Czachor M 2007 J. Phys. A: Math. Theor. 40 F259
Aerts D and Czachor M 2006 Preprint quant-ph/0610187 Aerts D and Czachor M 2006 Preprint quant-ph/0611279
[2] Deutsch D and Jozsa R 1992 Proc. R. Soc. A 439553
[3] Magulski T and Orłowski Ł 2007 Preprint quant-ph/0705.4289
[4] Simon D R 1997 SIAM J. Comput. 261474
[5] Pawłowski M 2006 Preprint quant-ph/0611051
[6] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[7] Hestenes D 1966 Space-Time Algebra (New York: Gordon and Breach)
[8] Havel T F and Doran C J L 2001 Preprint quant-ph/0106063
[9] Somaroo S S, Cory D G and Havel T F 1998 Phys. Lett. A 2401
[10] Parker R and Doran C 2001 Preprint quant-ph/0106055
[11] Doran C J L, Lasenby A N, Gull S F, Somaroo S and Challinor A D 1996 Adv. Imaging. Electron. Phys. 95271
[12] Havel T F, Doran C and Furuta S Proc R. Soc. Lond. at press
[13] Sharf Y, Cory D G, Somaroo S S, Havel T F, Knill E and Laflamme R 2000 Mol. Phys. 981347

